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LEITER TO THE EDITOR 
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lattice: an exact solution 
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Abstrad. The dynamics of a random sequential absorption process on a quasi-ane-dimen- 
tional lattice is solved exactly. It is shown that the filling process exhibits some features 
typical totwo-dimensionalsystems. Inpanicularthejammingdensityisp.=i(l-(1/2e))= 
0.408 030 1397. . . , considerably lower than the one-dimensional jamming density 

Random sequential adsorption (RSA) is an irreversible random packing process. Par- 
ticles are absorbed randomly, one at a time, into a d-dimensional space, obeying the 
following conditions: ( a )  particles do not overlap, (b) absorbed particles are per- 
manently fixed in their spatial positions. Thus at each step a new particle is either 
rejected from the volume, or it is added at random to an accessible point in the 
diminished volume formed by all previously adsorbed particles. The filling process 
ends at a jammed state, when no more particles can be absorbed. Clearly the average 
jamming density pr is smaller than the corresponding density of closest packing po. 

A variety of physical, chemical, biological and ecological irreversible processes are 
realized by RSA models [I-61. Furthermore, since the RSA phase is a non-equilibrium 
disordered phase for all values of p for which it exists, it has been suggested as a 
phenomenological model for glasses and supercooled liquids [7]. 

Exact RSA results are available only in one-dimensional systems [ l ,  2, 81. For 
higher-dimensional systems most of the available information stems from numerical 
machine calculations [9-121. Recently formal series expansions for the dynamics of 
RSA models have been derived [13-161. The graphical expansion of [13], used here, 
represents the time evolution of multi-particle correlation functions in terms of diagrams 
of lattice animals. The diagramatic expansion is valid for all dimensions d. For the 
two limiting dimensionalities d = 1 and d =CO the expansions simplify considerably. 
The analytical d = 1 results are easily recovered, while at large d the expansion reduces 
to a Cayley tree type approximation [17], predicting for the one particle correlation 
function, i.e. the coverage density: 

p ( u )  = In[l+ o,(l - u)]/aZ (1) 

where u=exp(-f) is the natural dynamical variable of [13] and a, is the second 
graphical coefficient (see below), related to the corresponding equilibrium second vinal 
coefficient B, by: a, = 2Bz- 1. In particular, one obtains for the jamming density: 

p.= In( 1 +a2) /a2 .  (10) 
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In this letter we utilize the graphical method [I31 to obtain an exact solution for RSA 
on a quasi-one-dimensional lattice, consisting of a strip of two infinite rows. Some of 
the properties of RSA on a d = 2  cubic lattice are already manifested in the time 
evolution of the process on the strip. Therefore it is worthwhile to study this case. 

Consider particles absorbing at random on a 2 * m  strip of a square lattice, with 
mutual nearest neighbours (NN) exclusion and periodic boundary conditions. The time 
evolution of the filling process is formulated in terms of a time-dependent distribution 
function P(s,  f), s =  {si}, si are two state occupation variables which are defined as 1 
for empty sites and 0 for occupied ones. P satisfies a master equation 

N 
dP(s , I ) /dt= 1 [W(l-sj)P(sr,.  . ., 1-4  ,..., SN, 1)- W(S~)P(S, t ) ]  (2) 

i=, 

whose initial conditions, for an initially empty lattice, are si( f =0) = 1 for all i. More 
general initial conditions may be implemented as well. The transition rate W, defined 
by: 

w, = si n SI 
I 

(3) 

represents the mutual repulsion of the adsorbed particles. It vanishes if the site i or 
one of its N N  are occupied ( j  runs over the N N  of i), Macroscopic correlation functions 
are obtained by appropriate tracing of P; in particular the coverage density p ( t )  is 
related to the one particle probability distribution by: 

p ( t )  = 1 - ( s i )  (4) 

d(s,)/dt=-( WJ. ( 5 )  

where the brackets ( ) denote an ensamble average. Using ( 2 )  and (3) one obtains 

Similarly the nth time derivative of (si) is given by a sum of all possible combinations 
of n-point connected lattice animals. Since at I = O  (U = 1) si = 1, all the resulting 
correlators are equal to unity at this limit, which enables one to construct expansions 
for macroscopic observables in powers of (1  -U) [13]. 

The density is given by: 
m m 

p ( t ) =  1 (-l)'"+"b.t"/n!= 1 ( - l ) '"+i 'a . ( l -u)"/n!  ( 6 a )  
" = I  " = I  

where the relation between the two sets of coefficients is given by: 

b. = 1 a&,.,. (66) 

Sn.m is a Stirling number of the second kind [IS]. The coefficients b, are identical to 
those of Dickman e1 al [15]. Since the coefficients a. are equal to the number of 
connected lattice animals containing n points, they are equal to positive integers, and 
their calculation reduces to an enumeration problem. 

The simplicity of the one-dimensional models is reflected in a set of a few generating 
configurations for the connected animals, since the number of boundary points at each 
step is independent of n. In particular for the NN case there is a single generating 
configuration, resulting in the simple recursion relation: a. = 2a.-,. Similarly to the 

m = i  
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d = 1 case, the time evolution on the strip is characterized by a finite set of generating 
configurations: 

An = st.is2.i (70) 

Bn = An~z,osz.~+i (7b)  

C n  =An~2,n+i (7c) 

D n  = Ans~,osz,n+~ ( 7 4  

dA./du =4Cn (80) 

dB./du =2C.+,+2uBn,, (8b) 

dC./du =An+, + B. + D. + uC.,, (SC)  

dDJdu =2Cn,,+2uD.+,. ( 8 4  

It is easy to see that, as in the d = 1 case, the evolution of the configurations A-D is 
n independent. Furthermore the evolution of B and D is identical, hence (8) reduces 
to: 

i = ,  

whose time evolution is given by the closed set of coupled differential equations: 

dA/du = 4C (9a) 

dB/du =2C+2uB (9b) 

d C / d u  =A+2B+ uC (9c) 

with the initial conditions A(u = 1) = B(1) = C(1) = 1. It can be easily checked that 
the solution of (9) has the form: 

A( U )  = u2 (loa) 

B ( u ) = ~ ( u ~ + ~ u ~ + I ) ~ ( ~ ’ - ’ )  (lob) 

~ ( u ) = ~ ( u ’ + u ) e ‘ ~ ’ - ~ ’ .  (10c) 

The coverage density p is given by the solution o f  

dZp(r)-A(u)+2B(u)  du 

With the initial conditions: p(1) = 0 and -(dp/du)(l)  = 1. Integrating (11) one obtains: 

p ( u )  = 1 - U  -ju’ du’ du”(A(u”)+2B(u”)). 

The jamming density p. = p ( u  = 0) = p(  f = m) can be easily evaluated: 

p = -  ( I--  ie) - - 0.408 030 139 . . . 

This result has been recently obtained by Fan and Percus [ 191 using a different method. 
The value of pr is substantially lower than the corresponding one dimensional jamming 
density, which is p,(d = 1) = (1 -e-’)/2 =0.432 332. . . . It is close to the average of the 
densities of the d = 1 and the square lattice models. The jamming density of the latter 
is estimated to be p,(d =2)=0.364 13 (1) [13,151. 
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The following four-term recursion relation results from ( lob)  

Em+, =3B.+(3n+5)B._,-4(n+I)B._,-2(n+3)(n -2)&,. (14) 

a.=4[B._2-B._,-(n-3)B._,] .  (15) 
It is easily seen that both B. and a, increase asymptotically like fl. This behaviour 

is in sharp contrast with the characteristic exponential dependence of the d = 1 case. 
It is identical to the asymptotic growth of lattice animals on the d = 2 lattice [20]. Thus 
the 2*m solution may provide useful information regarding the process on the d = 2 
lattice. 

It is worthwhile to note that although the lattice is a low-dimensional one, the 
large-d approximation for the coverage density on the strip p,,=ln[l+3(1 -u)]/3 is 
quite a good approximation for p ( u )  especially in the short time regime. 

limiting value pr decays asymptotically like a power law [21,22], in lattice systems the 
decay is exponential. Indeed, the long time behaviour of the coverage density is: 

(16) 

The coefficients a. of (60) are related to B. by: 

in conirdsi io coniinuum RSA modeis, where the deviaiion ofthe density from iIs 

p ( u )  = p, - e, U + O[U’] 
where 

c j = -  I + -  eU’du =0.19225993836 .... x :Jb’ ) 
In  figure 1 the exact time evolution is compared to the long time approximation (16), 
and to the large-d approximation (1). Both approximations bound the exact values 
from above for all f. For U <0.4, i.e. f > 0,916, the errors in the long time approximate 
values are less than 5%, while the errors in the large-d approximation do not exceed 
the same value for U > 0.65, i.e. f < 0.43 1. 

Multi-particle correlation functions are directly related to p. It is easy to see that 
the two particle occupation function for NN sites is given by: 

(sd+,( t ) )= 1-2P(f) 

0.2 0. b 0.6 0.8 1.0 

I l - u l  

Figure 1. me exact time evolution of the wvcrage density p ( u )  (continuous line) is shown 
as a function of ( I  -U), T h e  long time approximation (equation (14) (0)). and the large-d 
approximation (equation (1)(+)) bound the exact values from above. 
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At the jamming limit the local pair distribution has one of the two possible 
configurations 

1 1 0  1 0  
0 1  0 1 1  

or (recall that 0 designates an occupied site). 

The weight of the second configuration is given by (16), and the corresponding pair 
distribution function is: 

g(2, 1)=(1-2pr)/2p,=0.225 39. (17a) 

The complementary function is: 

g(1, 1)=0.77461. (176) 

In general g(k, k') is given as a sum of products of g(1 , l )  and g(2.1) 

where 2m -t I = k, and k = I +  m modulo 2. The binomial coefficient is the number of 
different ways to perform a (k, k') shift in I steps of type (1 , l )  and m steps of type 
(2 , l ) .  Although g(l,1) is substantially higher than g(2,1), the correlation loss is very 
fast, and g(k, k') converges to its asymptotic value pr for relatively small k values. As 
an example, for k = 4 the occupation difference of the two sublattices relative to their 
average value is 

2[g(4,O)-g(4,l)l/[g(4,O)+g(4,1)1=0.012 

while the relative deviation from pr is of the order of 0.5%. 

Consider the Hamiltonian 
Finally it is interesting to compare the RSA model with a similar equilibrium problem. 

N 

In the infinite strong coupling limit the configurations of H are identical to those of 
the jammed RSA process. Since the second term in H excludes NN occupation, the 
first term that plays the role of a short ranged pseudo attraction suppresses configura- 
tions in which a site and all its NN are empty. Let cN and nN denote the number of 
allowed configurations and their average occupation number respectively for a 2 * N 
strip. Then using the following recursion relations 

CN =CN-2+2cN-,+CN-4 

and 

nN = [nN-2cN-2+2nN-3~N-3 + nN--4~N--4]/cN + 2 

one obtains for the average density of the infinite H system pH = 0.361 803,. . . , which 
is smaller than p.. A similar relation bas been found for the one-dimensional case 
[13]. We conjecture that this result is general, and the jamming density is always higher 
than the average density of a corresponding Hamiltonian system. The discrepancy 
results from the fact that all the configurations have the same statistical weight in the 
equilibrium case, while in the dynamical RSA process the statistical weight of a 
configuration is proportional to its occupation number. 
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